THE GENERALIZED KOEBE FUNCTION

I. Naraniecka, J. Szynal, A. Tatarczak

We observe that the extremal function for $\left|a_{3}\right|$ within the class U_{α}^{\prime} (see Starkov [1]) has as well the property that $\max \left|A_{4}\right|>4.15$, if $\alpha=2$. The problem is equivalent to the global estimate for MeixnerPollaczek polynomials $P_{3}^{1}(x ; \theta)$.

In [1] Starkov has found max $\left|a_{3}\right|$ within the class U_{α}^{\prime}, which for $\alpha=2$ disproved the Campbell-Cima-Pfaltzgraff conjecture, that $\left|a_{3}\right| \leq 3$ for U_{2}.

The extremal function $f_{0}(z)=\sum_{n=1}^{\infty} A_{n} z^{n}, \quad z \in \mathbb{D}=\{z:|z|<1\}$ has the form

$$
f_{0}^{\prime}(z)=\frac{1}{\left(1-z e^{i \theta}\right)^{1-i \sqrt{\alpha^{2}-1}}\left(1-z e^{-i \theta}\right)^{1+i \sqrt{\alpha^{2}-1}}}
$$

with appropriate $\theta, \theta \in(-\pi, \pi], \alpha>1, z \in \mathbb{D}$ which appears to be very closely connected with Meixner-Pollaczek (M-P) polynomials [2].

For $\lambda>0, x \in \mathbb{R}, \theta \in(0, \pi)$ the Meixner-Pollaczek polynomials of the variable x are defined by the generating function

$$
G^{\lambda}(x ; \theta ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1-z e^{-i \theta}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} P_{n}^{\lambda}(x ; \theta) z^{n}, \quad z \in \mathbb{D} .
$$

Therefore, we see that $n A_{n}=P_{n-1}^{1}\left(\sqrt{\alpha^{2}-1} ; \theta\right)$ and the estimate of $P_{n}^{1}(x ; \theta)$ as the function of $\theta \in(0, \pi)$ is of independent interest and will lead to the bound for $\left|A_{n}\right|$. In this note we find sharp bound for $\left|P_{n}^{1}(x ; \theta)\right|$, $n=1,2,3$, which implies that max $\left|a_{4}\right|>4.15$ for U_{2}, supporting the result of Starkov [1].

[^0]Theorem A [2]. (i) The M-P polynomials $P_{n}^{\lambda}(x ; \theta)$ satisfy the threeterm recurrence relation:

$$
\begin{aligned}
n P_{n}^{\lambda}(x ; \theta) & =2[x \sin \theta+(n-1+\lambda) \cos \theta] P_{n-1}^{\lambda}(x ; \theta)- \\
& -(2 \lambda+n-2) P_{n-2}^{\lambda}(x ; \theta), \quad n \geq 2 .
\end{aligned}
$$

(ii) The polynomials $P_{n}^{\lambda}(x ; \theta)$ are given by the formula:

$$
P_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \sum_{j=0}^{n} \frac{(\lambda+i x)_{j}(\lambda-i x)_{n-j}}{j!(n-j)!} e^{-2 i j \theta}, \quad n \in \mathbb{N} \cup\{0\} .
$$

(iii) The polynomials $P_{n}^{\lambda}(x ; \theta)$ have the hypergeometric representation

$$
P_{n}^{\lambda}(x ; \theta)=e^{i n \theta} \frac{(2 \lambda)_{n}}{n!} F\left(-n, \lambda+i x, 2 \lambda ; 1-e^{-2 i \theta}\right)
$$

Symbol (a) ${ }_{n}$ denotes the Pochhammer symbol:

$$
(a)_{n}=a(a+1) \ldots(a+n-1), n \in \mathbb{N},(a)_{0}=1
$$

and $F(a, b, c ; z)$ denotes the Gauss Hypergeometric Function.
(iiii) The polynomials $y(x)=P_{n}^{\lambda}(x ; \theta)$ satisfy the following difference equation
$e^{i \theta}(\lambda-i x) y(x+i)+2 i[x \cos \theta-(n+\lambda) \sin \theta] y(x)-e^{-i \theta}(\lambda+i x) y(x-i)=0$.
From Theorem A we have the form of $P_{n}^{1}(x ; \theta), n=1,2,3$, convenient for further calculations:

$$
\begin{gather*}
P_{0}^{1}(x ; \theta)=1 \\
P_{1}^{1}(x ; \theta)=2(x \sin \theta+\cos \theta) \tag{1}\\
P_{2}^{1}(x ; \theta)=3 x \sin 2 \theta+\left(2-x^{2}\right) \cos 2 \theta+\left(x^{2}+1\right) \\
P_{3}^{1}(x ; \theta)=\left(x^{2}+1\right)(x \sin \theta+ \\
+2 \cos \theta)+\frac{1}{3}\left(x\left(11-x^{2}\right) \sin 3 \theta+6\left(1-x^{2}\right) \cos 3 \theta\right) .
\end{gather*}
$$

REMARK. In our calculations we will use the obvious convenient formula

$$
A \sin \alpha+B \cos \alpha=\sqrt{A^{2}+B^{2}} \sin (\alpha+\varphi)
$$

where $\cos \varphi=\frac{A}{\sqrt{A^{2}+B^{2}}}, \quad \sin \varphi=\frac{B}{\sqrt{A^{2}+B^{2}}}$.

Denote

$$
\begin{array}{r}
\sin \beta_{0}=\frac{2}{\sqrt{x^{2}+4}}, \quad \cos \beta_{0}=\frac{x}{\sqrt{x^{2}+4}} \tag{2}\\
\sin \beta_{1}=\frac{6\left(1-x^{2}\right)}{\sqrt{x^{2}+4} \sqrt{x^{2}+9} \sqrt{x^{2}+1}} \\
\cos \beta_{1}=\frac{x\left(11-x^{2}\right)}{\sqrt{x^{2}+4} \sqrt{x^{2}+9} \sqrt{x^{2}+1}}
\end{array}
$$

x is fixed, and

$$
\Psi(\theta)=3 \sqrt{x^{2}+1} \sin \left(\theta+\beta_{0}\right)+\sqrt{x^{2}+9} \sin \left(3 \theta+\beta_{1}\right), \theta \in[-\pi, \pi] .
$$

Theorem 1. For the Meixner-Pollaczek polynomials $P_{n}^{1}(x ; \theta)$, $x \geq 0, \quad \theta \in(0, \pi)$ we have the sharp estimates:

$$
\begin{gathered}
\left|P_{1}^{1}(x ; \theta)\right| \leq 2 \sqrt{x^{2}+1}, \\
\left|P_{2}^{1}(x ; \theta)\right| \leq \sqrt{x^{2}+1}\left(\sqrt{x^{2}+1}+\sqrt{x^{2}+4}\right) \\
\left|P_{3}^{1}(x ; \theta)\right| \leq \frac{1}{3} \sqrt{x^{2}+1} \sqrt{x^{2}+4} \max _{\theta \in[0, \pi]}|\Psi(\theta)|= \\
=\frac{1}{3} \sqrt{x^{2}+1} \sqrt{x^{2}+4}\left(3 \sqrt{x^{2}+1} \sin \left(\hat{\theta}+\beta_{0}\right)+\sqrt{\left(x^{2}+1\right) \sin ^{2}\left(\hat{\theta}+\beta_{0}\right)+8}\right)< \\
<\sqrt{x^{2}+1} \sqrt{x^{2}+4}\left(\sqrt{x^{2}+1}+\frac{1}{3} \sqrt{x^{2}+9}\right)
\end{gathered}
$$

where $\hat{\theta} \in(0, \pi)$ is the root of the equation

$$
H(\theta)=\frac{\cos \left(3 \theta+\beta_{1}\right)}{\cos \left(\theta+\beta_{0}\right)}=-\sqrt{\frac{x^{2}+1}{x^{2}+9}}
$$

Remark. Due to the property: $\Psi(\pi+\theta)=-\Psi(\theta)$ and $H(\pi+\theta)=H(\theta)$, the estimates for $\left|P_{n}^{1}(x ; \theta)\right|, n=1,2,3$ are valid for $\theta \in[-\pi ; \pi]$.

Proof. Using Remark 1, we have for $x>0$:

$$
P_{1}^{1}(x ; \theta)=2 \sqrt{x^{2}+1} \sin \left(\theta+\varphi_{1}\right) \leq 2 \sqrt{x^{2}+1}
$$

with equality for θ_{1}, such that $\sin \left(\theta_{1}+\varphi_{1}\right)=1$, where

$$
\cos \varphi_{1}=\frac{x}{\sqrt{x^{2}+1}}, \quad \sin \varphi_{1}=\frac{1}{\sqrt{x^{2}+1}}
$$

For $P_{2}^{1}(x ; \theta)$ we have

$$
\begin{gathered}
P_{2}^{1}(x ; \theta)=3 x \sin 2 \theta+\left(2-x^{2}\right) \cos 2 \theta+\left(x^{2}+1\right)= \\
=\sqrt{x^{2}+1} \sqrt{x^{2}+4} \sin \left(2 \theta+\varphi_{2}\right)+\left(x^{2}+1\right) \leq \sqrt{x^{2}+1}\left(\sqrt{x^{2}+4}+\sqrt{x^{2}+1}\right)
\end{gathered}
$$

with equality for θ_{2}, such that $\sin \left(2 \theta_{2}+\varphi_{2}\right)=1$, where

$$
\cos \varphi_{2}=\frac{3 x}{\sqrt{x^{2}+1} \sqrt{x^{2}+4}}, \quad \sin \varphi_{2}=\frac{2-x^{2}}{\sqrt{x^{2}+1} \sqrt{x^{2}+4}}
$$

Finally, for $P_{3}^{1}(x ; \theta)$ we have

$$
\begin{gathered}
P_{3}^{1}(x ; \theta)=\left(x^{2}+1\right)(x \sin \theta+2 \cos \theta)+\frac{1}{3}\left(x\left(11-x^{2}\right) \sin 3 \theta+6\left(1-x^{2}\right) \cos 3 \theta\right)= \\
=\left(x^{2}+1\right) \sqrt{x^{2}+4} \sin \left(\theta+\beta_{0}\right)+\frac{1}{3} \sqrt{x^{2}+1} \sqrt{x^{2}+4} \sqrt{x^{2}+9} \sin \left(3 \theta+\beta_{1}\right)= \\
=\frac{1}{3} \sqrt{x^{2}+1} \sqrt{x^{2}+4}\left(3 \sqrt{x^{2}+1} \sin \left(\theta+\beta_{0}\right)+\sqrt{x^{2}+9} \sin \left(3 \theta+\beta_{1}\right)\right)= \\
=\frac{1}{3} \sqrt{x^{2}+1} \sqrt{x^{2}+4} \cdot \Psi(\theta)
\end{gathered}
$$

where β_{0} and β_{1} are given by (2).
In order to find sharp estimate for $P_{3}^{1}(x ; \theta)$ we have to find $\max _{0 \leq \theta \leq \pi}|\Psi(\theta)|$ for fixed $x>0$.

The equation $\Psi^{\prime}(\theta)=0$ is equivalent to

$$
\begin{equation*}
H(\theta)=\frac{\cos \left(3 \theta+\beta_{1}\right)}{\cos \left(\theta+\beta_{0}\right)}=-\sqrt{\frac{x^{2}+1}{x^{2}+9}} \tag{3}
\end{equation*}
$$

which is pretty difficult for discussion. However we can restrict ourselves to the case $\theta \in[0, \pi]$, because $\Psi(\pi+\theta)=-\Psi(\theta)$ and $H(\pi+\theta)=H(\theta)$.
Corolary. In the case $\alpha=2 \Leftrightarrow x^{2}=3$, the equation (3) is equivalent to

$$
\cos \left(\theta+\beta_{0}\right)+\sqrt{3} \sin \left(3 \theta+\beta_{0}\right)=0, \sin \beta_{0}=\frac{2}{\sqrt{7}}, \cos \beta_{0}=\frac{\sqrt{3}}{\sqrt{7}}
$$

or

$$
\begin{equation*}
5 t^{3}+5 \sqrt{3} t-7 t-3 \sqrt{3}=0, \quad \text { where } \quad t=\operatorname{tg} \theta \tag{4}
\end{equation*}
$$

The approximate calculations shows that, the maximal value of $\Psi(\theta)$ is given by $\hat{t}=\operatorname{tg} \hat{\theta} \simeq 0.938$. For $t=\operatorname{tg} \theta \simeq 0.938$ we obtain $\max \left|A_{4}\right|=$ $\max \frac{1}{4}\left|P_{3}^{1}(x ; \theta)\right|>4.17$, which show that for $U_{2}^{\prime},\left|A_{4}\right|$ can be greater than 4.

Our result follows simply by taking $\theta=\frac{\pi}{4}$ in $\Psi(\theta)$. We get

$$
A_{4}=\sqrt{7}\left(1+\frac{\sqrt{3}}{3}\right) \sin \left(\frac{\pi}{4}+\beta_{0}\right)=\frac{1}{6} \sqrt{2}(5 \sqrt{3}+9)>4.15 .
$$

Remark. Another important extremal problem solved by Starkov [3], namely max $\left|\arg ^{\prime}(z)\right|, f \in U_{\alpha}^{\prime}$, has the extremal function:

$$
f_{0}(z)=\frac{1}{\left(e^{i t_{2}}-e^{i t_{1}}\right) i \sqrt{\alpha^{2}-1}}\left[\left(\frac{1-z e^{i t_{1}}}{1-z e^{i t_{2}}}\right)^{i \sqrt{\alpha^{2}-1}}-1\right], \quad t_{1} \neq t_{2}+2 k \pi
$$

with $t_{1}=\pi-\operatorname{arctg} \frac{1}{\alpha}-\operatorname{arctg} \frac{r}{\alpha}, t_{2}=-\pi+\arcsin \frac{1}{\alpha}-\arcsin \frac{r}{\alpha}$, $r=|z|<1, t_{1} \neq-t_{2}$.

The coefficients of this function are not M-P polynomials. Inspired by that we are going to study the properties of the generalized Koebe function defined by the formula:
$k_{c}(\theta, \psi ; z)=\frac{1}{\left(e^{i \psi}-e^{i \varphi}\right) c}\left[\left(\frac{1-z e^{i \theta}}{1-z e^{i \psi}}\right)^{c}-1\right], c \in \mathbb{C} \backslash\{0\}, e^{i \psi} \neq e^{i \theta}, z \in \mathbb{D}$,
and

$$
k_{0}(\theta, \psi ; z)=\frac{1}{\left(e^{i \psi}-e^{i \varphi}\right)} \log \frac{1-z e^{i \theta}}{1-z e^{i \psi}}, \quad e^{i \psi} \neq e^{i \theta}, \quad z \in \mathbb{D}
$$

for which

$$
k_{c}^{\prime}(\theta, \psi ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{1-c}\left(1-z e^{i \psi}\right)^{1+c}}, \quad c \in \mathbb{C} .
$$

This is evidently connected with the polynomials which we call the generalized M-P polynomials (GMP) given by generating function $(\theta, \psi \in \mathbb{R}, x \in \mathbb{R}, \lambda>0):$
$G^{\lambda}(x ; \theta, \psi ; z)=\frac{1}{\left(1-z e^{i \theta}\right)^{\lambda-i x}\left(1-z e^{i \psi}\right)^{\lambda+i x}}=\sum_{n=0}^{\infty} P_{n}^{\lambda}(x ; \theta, \psi) z^{n}, z \in \mathbb{D}$.

This set of polynomials will be studied somewhere else.

Bibliography

[1] Starkov V. V. The estimates of coefficients in locally-univalent family $U_{\alpha}^{\prime} / /$ Vestnik Lenin. Gosud. Univ. 13(1984). P. 48-54. (in Russian).
[2] Koekoek R., Swarttouw R. F. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue // Report 98-17. Delft University of Technology. 1998.
[3] Starkov V. V. Linear-invariant families of functions // Dissertation. Ekatirenburg, 1999. 1-287. (in Russian).

Department of Mathematics, Faculty of Economics, Maria Curie-Skłodowska University, 20-031 Lublin, Poland
E-mail: iwona.naraniecka@hektor.umcs.lublin.pl
E-mail: jszynal@hektor.umcs.lublin.pl
E-mail: antatarczak@gmail.com

[^0]: (C) I. Naraniecka, J. Szynal, A. Tatarczak, 2010

